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Abstract

Residuals from linear factor-based asset pricing models exhibit volatility comovement

in both the physical and the risk-neutral world. The volatility-factor structure in the in-

dividual stock variances cannot be replicated by assuming factors on the stock returns.

Equalizing the market variance and the index variance shows that if a two-factor struc-

ture on individual variance exists, the common factor besides the market variance factor,

the so-called ”common idiosyncratic variance factor”, embeds a premium, which, combined

with the correlation premium, explains the index variance risk. Empirical study using op-

tion prices and equity returns suggests a negative correlation between the premium of this

factor and the market variance factor, which causes the insignificant variance premium on

individual stocks. Further evidence shows that the trading strategy based on collecting this

factor premium generates significantly positive returns.
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1 Introduction

Linear factor-based asset pricing models such as the CAPM of Merton (1973) and the APT

of Ross (1976) suggest that the equity returns can be explained by the market returns or a

linear combination of factors, leaving the residuals to be idiosyncratic, or firm specific. The

factors represent the source of systematic risk, thus embed premia. The unexplained residuals

from the linear equation are usually regarded as the idiosyncratic risk, which is not priced

under perfect diversification. The theory also implies that the idiosyncratic volatility should

not be priced. However, empirical tests about the asset pricing implication of the idiosyncratic

volatility suggest otherwise. The well-known idiosyncratic volatility puzzle of Ang et al (2009)

indicates that the high residual variances from a Fama-French (1993) model imply low future

returns, which contradicts to the theory that the idiosyncratic risk should be irrelevant or

at least positively related to returns under imperfect diversification. This puzzle calls for

attention on the pricing implication of the idiosyncratic volatility.

Although many studies have been focusing on explaining this puzzle such as Chen and

Petkova (2012), Fu (2009) and Cao and Han (2013), where missing factors are regarded as

the dominating reason for the priced idiosyncratic risk, it still draws attention as to why, even

though the co-variations in the returns are almost totally extracted by the return factors, the

idiosyncratic variances of different stocks still possess a high level of comovement, see for ex-

ample Herskovic et al. (2014). The comovement in idiosyncratic volatility can only be partially

explained by missing factors, as they show that even after a 5-factor PCA, where 98% of the

variation in raw return series has been explained, the residual variances of different stocks still

exhibit strong correlations. This finding calls for analysis on four topics: 1) why, statistically

or economically, does the comovement exist; 2) as it cannot be explained by the linear factor

pricing models, how to capture this feature; 3) if the comovement in idiosyncratic volatility

can be modelled by a factor, will this factor be priced; 4) if the factor is priced, how to trade

the factor premium. This paper aims at explaining these four topics.

To understand the comovement in idiosyncratic volatility, we start our analysis using the

daily return series of 30 constituents in the Dow Jones Industrial Average Index. We find sim-

ilar results as Herskovic et al. (2014) that the variances of the residuals from the static and

conditional CAPM co-move at very high levels of correlations. After extending this analy-

sis to the risk-neutral world where we use the standardized at-the-money implied volatilities

of the 30 stocks, we find even higher levels of comovement. We proceed by using the vari-

ance beta instead of the squared return beta to extract the market variance. The result shows

that this method decreases the comovement significantly such that the variance residual se-

2



ries only a weak comovement in the absolute terms. This finding sheds light on our second

topic, in which we are tempted by using the volatility-factor model to explain this feature. The

comovement in absolute terms simply suggests different signs of factor loadings on the possi-

ble common idiosyncratic variance factors, which combined with the market variance factor,

forms a two-factor model on the volatility structure. We claim that there are three reasons for

the comovement in idiosyncratic variances: 1) the difference between the variance beta and

the squared return beta, 2) the existence of a volatility factor on which some of the stocks have

negative factor loadings, and 3) a zero-correlation pricing factor that contributes no correlation

but similar volatility to different stocks.

The second part of the paper aims at applying the volatility-factor model implied by the

first two reasons. We apply the volatility-factor GAS model of Boswijk and Liu (2014) on the

equity returns, and find sufficient evidence of the existence of a second volatility factor besides

the market variance factor, which we call the common idiosyncratic variance factor, or the CIV

factor following Herskovic et al. (2014). Across different sample groups, about 1/3 of all the

stocks have negative loadings on the CIV factor.

To investigate the premium of this volatility factor, we apply Kalman Filter on the implied

volatility series and extract the conditional and unconditional factor premia for the market

variance factor and the CIV factor. In all of our sample groups, the market variance factor

contains a positive premium, which is in line with empirical findings. The CIV factor, how-

ever, contains a negative premium in most groups. Considering the fact that most stocks have

insignificant variance premium, the negative premium is economically intuitive as it serves as

offsetting the market variance premium.

As the next step, we follow the method in Driessen et al. (2009) and design a trading strat-

egy that involves long positions in individual straddles and the S&P500 Index, and short po-

sitions in individual stocks and the index straddle. The strategy, under appropriate portfolio

weight, has only positive exposures to the CIV factor, thus collecting the factor premium.

Throughout the sample period, the trading strategies across different sample groups achieve

daily excess returns of around 1.5% and monthly returns above 20%, which is a strong evi-

dence of the negative CIV factor premium.

This paper develops as follows: Section 2 describes the data used in the physical and the

risk-neutral world; Section 3 provides the intuition as to why we need volatility-factor models

to analyse the comovement in idiosyncratic variances; Section 4 derives the impact of the CIV

factor premium on individual variances and index variances; Section 5 implements the factor

filtration and premia estimation; Section 6 shows the details and empirical performance of the
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trading strategy that only trades the CIV factor; Section 7 concludes the paper.

2 Data Description

The daily stock price series are obtained from the CRSP database with all current 30 con-

stituents in the Dow Jones Industrial Average Index. The data window ranges from 3rd

January 2000 to 31st December 2013. The market index is taken to be the S&P500 Index.

The implied volatility series and the option price series are obtained from the OptionMetrics

database, where standardized at-the-money (ATM) implied volatility series with 30-day ma-

turity is taken for each individual stock and the S&P500 Index from 3rd January 2000 to 31st

August 2013. We follow the data cleaning procedure of Driessen et al. (2009) and only focus

on short maturities from 14 to 60 days: first, we delete the option prices with missing implied

volatilities and zero open interests; second, we delete the options with extreme moneyness

such that the Black-Scholes delta is below 0.15 for calls and above -0.05 for puts; third, we

only keep the options that can be formed to a straddle contract.

3 Comovement in idiosyncratic volatility

Residuals from linear factor-based asset pricing model exhibit statistical independence, but a

strong factor structure in the squared terms, i.e., a strong comovement feature in their idiosyn-

cratic volatilities. This section provides empirical evidences toward the idiosyncratic volatility

comovement in both the physical (P) and the risk-neutral (Q) world. A more detailed P-world

study can be found in Herskovic et al. (2014). We focus on the CAPM so that the same analy-

sis can be conducted in the risk-neutral world using the implied beta calculation of Buss and

Vilkov (2012).

3.1 Comovement in P world

To examine the comovement in the idiosyncratic volatilities under the CAPM setting in the P

world, we use the daily return series of the 30 stocks together with the daily return series on

the S&P500 Index. We calculate the firm specific betas using the static sample averages and

the multivariate DCC method of Engle (2002), which respectively corresponds to the static and

the conditional CAPM. Before extracting the market return, the average pairwise correlation

of the daily stock return series is 0.3957. In the static case, we calculate the constant beta for

stock i by β̂i =
∑T
t=1 ritrmt/

∑T
t=1 r

2
mt. In the dynamic case, we apply the bivariate DCC model

on each stock return series and the market return series. The conditional beta for stock i is
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calculated by β̂it = ρitσi,t/σmt, where ρit is the conditional correlation between the daily return

of stock i and the market return. Here σ2
mt is the conditional variance of the market return.

The same method is also used by Hansen and Lunde (2014). The return residuals in both cases

are then calculated by

static : ε̂it = rit − β̂irmt dynamic : ε̂it = rit − β̂itrmt

The 30 residual series {εit}Tt=1 , i = 1, ...,30 exhibit an average pairwise correlation of 0.0089 in

the static beta case and 0.0065 in the dynamic beta case, i.e., in both cases, the market return

extracts over 97% of the return correlation.

In the static case, we apply the GJR-GARCH(1,1) model on each series {εit}Tt=1, thus col-

lecting the conditional variances of the residuals, or the idiosyncratic variances for each stock

i. The pairwise average correlation of the idiosyncratic variance series of 30 stocks is 0.5296,

which is much higher than the residual correlation 0.0089. In the dynamic case, we calculate

the idiosyncratic variance of stock i by σ2
it − β̂

2
itσ

2
mt, and the series exhibits an average pair-

wise correlation of 0.5208. Strong comovement in idiosyncratic variances are found in both

the static and the conditional CAPM settings, which suggests the potential factor structure on

the idiosyncratic variances, or a two-factor structure on the individual variances with the first

factor being the market return variance. This result is not innovative since one can find a more

comprehensive analysis on linear pricing models in the work of Herskovic et al. (2014). There-

fore, we did not go into more complicated linear pricing models to show the comovement

and give all the credit of this subsection to Herskovic et al. (2014). However, the following

subsections are considered our contribution in ameliorating this finding.

3.2 Comovement in Q world

In this subsection, we extend Herskovic et al’s work to the risk-neutral world, and see if the co-

movement in idiosyncratic volatility still preserves. The existence of comovement in implied

idiosyncratic volatilities will suggest that the volatility-factor structure preserves through the

physical and the risk-neutral world, which makes it tempting to investigate whether this

volatility-factor structure conveys a variance risk premium. To examine the comovement in

the implied idiosyncratic volatility, we use the standardized implied volatilities of the at-the-

money options with 30-day maturity for the 30 stocks and the S&P500 Index. To calculate

the idiosyncratic variances, we first calculate the implied betas using the method of Buss and

Vilkov (2012), where

βQiM,t =
σQi,t

∑N
j=1ωjσ

Q
j,tρ

Q
ij,t

(σQM,t)
2

(3.2.1)
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where σQi,t is the implied volatility of stock i at time t and σQM,t is the implied volatility of the

S&P500 Index at time t; ωj is the weight given to stock j in the index, which for simplicity, we

restrict it to be 1/30; ρQij,t is the implied conditional correlation between stock i and stock j at

time t. Note that ρQij,t is the only variable that cannot be collected in the Q-world, therefore,

Buss and Vilkov (2012) propose calculating ρQij,t by

ρQij,t = ρPij,t − et(1− ρ
P
ij,t)

where ρPij,t is the conditional correlation under P and is calculated by a 100-day rolling window

in the previous subsection. A negative et implies a positive correlation premium (ρQij,t > ρ
P
ij,t).

αt can be calculated by using the condition

(σQM,t)
2 =

N∑
i=1

ω2
i (σQi,t)

2 +
N∑
i=1

N∑
j=1

ωiωjσ
Q
i,tσ

Q
j,tρ

Q
ij,t

then

et = −
(σQM,t)

2 −
∑N
i=1

∑N
j=1ωiωjσ

Q
i,tσ

Q
j,tρ

P
ij,t∑N

i=1
∑N
j=1ωiωjσ

Q
i,tσ

Q
j,t(1− ρ

P
ij,t)

The implied idiosyncratic variance (σQiit )2 is then calculated as

(σQiit )2 = (σQi,t)
2 − (σQM,t)

2(βQiM,t)
2

Performing this procedure on each of the 30 stocks, we can collect the firm specific idiosyn-

cratic variances implied from the Q-world CAPM. Again, we calculate the average pairwise

correlation between the idiosyncratic variance series, and the result is 0.6710, which implies

that the comovement in the risk-neutral world is even higher than in the physical world. As

a clear illustration, Figure 1 shows the idiosyncratic variances from 10 selected stocks in both

the physical and the risk-neutral world.

[Insert Figure 1 about here]

3.3 The variance beta

From the conditional CAPM equation, one can derive a similar form for the conditional vari-

ance,

σ2
it = β2

itσ
2
mt + σ2

it,I (3.3.1)

such that the individual variances are driven by the market variance and the idiosyncratic

variance. We can consider σ2
mt as the market variance factor. The factor loading derived

from the CAPM is then β2
t . Note that the factor loading is calculated under the restrictions
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that the residual or the idiosyncratic variance σ2
it,I from this equation should always be posi-

tive. Relaxing the positive-residual restriction will enable the market variance factor to extract

more common features in individual variances, thus reducing the comovement in the resid-

uals. Note that when the residuals are not positive, we cannot use the term idiosyncratic

variance or idiosyncratic volatility, therefore we use the term variance residual instead.

One way to relax the restriction is using the variance beta introduced by Carr and Wu

(2009). In the static case, we calculate the firm specific beta β̂iv by running the regression

σ2
it = αi + βivσ

2
mt + vit

The variance residual series {vit}Tt=1 , i = 1, ...,30 are collected. In the dynamic case, we use a

rolling window regression method and calculate the conditional variance beta by β̂iv,t for firm

i at time t by running the regression

σ2
is = αit + βiv,tσ

2
ms + vis, s = t − 99, ..., t

The variance residual will be likely to contain negative entries when βiv > β
2
i , in which case

more comovement in the individual variances are explained by the market variance than in

the linear pricing model. Performing this procedure on both the conditional variances and

the implied variances, the variance residual average correlations are 0.2704 (static) and 0.1884

(dynamic)in the P world and 0.3515 (static) and 0.3195 (dynamic) in the Q world. Figure 2

shows the variance residuals under the dynamic variance beta. Compared with the idiosyn-

cratic variances in the CAPM case, we can see that the comovement feature in the variance

residuals is much weaker.

[Insert Figure 2 about here]

3.4 Reason of comovement

We start the analysis using the optimal orthogonal portfolio introduced by MacKinlay (1995),

in which individual stock returns can be modelled as

rt = Bfpt + βhfht +ut

where fpt is the K by 1 vector of time-t factor portfolio excess return. In cases where the

K-factor portfolios cannot be combined to form the tangency portfolio, we should include

portfolio fh, the optimal orthogonal portfolio, so that the constant disappears. The combina-

tion of fp and fh then forms the tangency portfolio. This equation can serve as the general case
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of linear factor-based pricing models, and the factors fh can be the possible omitted factor.

Taking the conditional variance of rt, we have

σ2
t = diag(Bvar(fpt)B

′) + β2
hσ

2
ht + σ2

ut (3.4.1)

where var(fpt) and σ2
ht can be treated as the common volatility factors.

3.4.1 The difference between the betas

Equation (3.4.1) and (3.3.1) both show that the linear factor-based pricing model restricts the

variance residual to be positive, which causes small factor loadings on the variance factors,

such as β2
h in equation (3.4.1). The smaller correlation and weaker comovement in the vari-

ance residuals under the variance beta cases are the results of the difference in variance betas

and the squared return betas. Figure 3 shows the scatter plot of the variance betas versus

the squared return beta for all the 30 stocks. In 28 out of 30 stocks, the variance betas are

higher, meaning that in most cases the squared return betas fail to fully extract the comove-

ment caused by the market variance in the variances. Therefore, one reason of the comovement

in the variance residual from a linear pricing model is that the squared return betas cannot

serve as the variance betas, since the former should always maintain positive residuals.

[Insert Figure 3 about here]

The fact that variance betas are able to extract more comovement of the variance residual

series than the squared return betas calls for the class of volatility-factor model which assumes

factor structures on the volatility or variance directly. Under the CAPM framework, we can

model the individual variance using a single volatility-factor model, where the only factor that

drives all the individual variances is the market variance. The factor loadings on the market

factor are the variance betas, and the residuals are allowed to be negative.

3.4.2 Negative loading on volatility factor

From equation (3.4.1), one feature of the missing factor fht is that the loading βh will be squared

in the variance equation, therefore only positive loading can be observed in the corresponding

volatility factor σ2
ht, which also implies the equivalence of volatility-factor models and the

return-factor models. However, if the loadings on the volatility factors have different signs

across different stocks, one can no longer derive the return factor structure as the loading of

the return factor will be a complex number. Intuitively, the factor pricing model can only
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detect the volatility factor(s) that has the same impact (in sign) on all individual stocks, but

fails to capture the factor having different impacts (in sign).

From Figure 2, one can see that even though the variance residuals do not show a clear

comovement, they tend to move together in magnitude, i.e., the absolute values of the residuals

tend to move together. In fact, as illustrated in Table 1, the correlations of the absolute values

of the variance residuals are, in P world, 0.3552 for the static case and 0.3760 for the dynamic

case, and in Q world, 0.4110 for the static case and 0.4304 for the dynamic case, all four

correlations are larger than the their correspondences in the non-absolute value cases. This is

a clear indication of the existence of another volatility factor, on which different stocks might

have different factor loadings in signs.

[Insert Table 1 about here]

3.4.3 Zero-correlation pricing factor

Another possible explanation is the existence of a zero-correlation pricing factor. Statistically,

assuming an N -vector return rt follows

rt = βrmt +Wtrxt +γεt , rmt ∼N (0,1), rxt ∼N (0,1), εt ∼N (0, I)

where Wt is a N by 1 vector with element values being either 1 or −1. Every element of Wt is

randomly chosen with equal probabilities assigned to both values. Since the only correlation

between rt should come from rmt, we apply a 1-factor PCA on the return vector. We take

N = 30, β = 1 : 0.02 : 5 and γ = 0.02 : 0.02 : 2, so that β is large enough for us to use one

principal component as the factor. For each pair of β and γ , we calculate the correlation of

the returns, the correlation of the squared returns, the correlation of the residuals and the

correlation of the squared residuals.

[Insert Figure 4 about here]

Figure 4 shows the graph of the four different correlations given different combinations of

β and γ . When γ is small, i.e., the noise in return observations is small, all but the correlation

of the PCA residuals have high correlations. The squared residuals, which we are particularly

interested in, display very high correlations, which are not influenced much by the level of β.

Combined with the bottom left graph, one can see that even though the PCA has extracted

nearly all the correlation in the returns, the comovement in the squared residuals cannot be

extracted, since the linear pricing factor simply cannot detect such a factor as rxt with factor
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loadings Wt. This forms another situation as to why there exists comovement in the variance

residuals.

4 Factor premium on idiosyncratic variance

The analysis above shows that some of the comovement in the variance residuals can be ex-

plained by another volatility factor on which each stock can have positive or negative factor

loadings. We follow this setting and see if this factor embeds a premium. To begin with, we

assume that the instantaneous variance of individual stock i follows

φ2
it = δIiφ

2
mt + δxift +αi (4.0.2)

where φ2
mt is the instantaneous market variance or the index variance, which can be treated

as the market variance factor with factor loading δmi . ft is the second volatility factor with

factor loading δxi , here we call ft the common idiosyncratic variance factor, or the CIV factor

following Herskovic et al. (2014). αi is a firm specific constant that captures the uncondi-

tional mean for the variance residuals. With no loss of generality, we assume EP[ft] = 0 and

covP(φ2
It , ft) = 0, thus the local level of the variance residuals is totally determined by αi .

From the equation of index variance in Driessen et al. (2009)

φ2
It =

N∑
i=1

ω2
i φ

2
it +

N∑
i=1

∑
j,i

ωiωjφitφjtρij,t (4.0.3)

we know that the index variance changes are driven by shocks to both individual variances

φt(t)2 and the correlation ρij,t. If we treat the index variance as the market variance, i.e., φ2
It =

φ2
mt, then the individual variance changes are also driven by the index variance. Moreover, we

assume a factor structure on ρij,t, such that

ρij,t = θij ρ̄t (4.0.4)

A more restricted version will be applying the equicorrelation model of Engles and Kelly

(2009), where ρij,t = ρ̄t.

Assuming constant index weights {ωi} for stock i and defining ιi =ω2
i +

∑
j,iωiωj

φj
φi
ρij , we

substitute equation (4.0.2) and (4.0.4) in equation (4.0.3) for φi(t)2 and ρij(t), and apply Ito’s

lemma on the variance risk premium EQ

t [dφ2
I ]−EP

t [dφ2
I ]:

EQ

t [dφ2
I ]−EP

t [dφ2
I ] = γf

{
EQ

t [df ]−EP

t [df ]
}
+γρ

{
EQ

t [dρ̄]−EP

t [dρ̄]
}

(4.0.5)

where γf =
∑N
i=1

ιiδxi
1−

∑N
i=1 ιiδmi

, and γρ =
∑N
i=1

∑
j,i

ωiωjφi (t)φj (t)

1−
∑N
i=1 ιiδmi

are the parameters that measure

the speed of mean reversions. Equation (4.0.5) shows that the index variance risk premium is

consisted of the CIV factor premium and the correlation premium.
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From equation (4.0.2), we have

EQ

t [dφ2
i ]−EP

t [dφ2
i ] = δIi

{
EQ

t [dφ2
I ]−EP

t [dφ2
I ]
}
+ δxi

{
EQ

t [df ]−EP

t [df ]
}

(4.0.6)

such that the individual stock variance risk premium is determined by the sum of index vari-

ance premium and the CIV factor premium. Empirically, positive volatility risk premium is

found in the index, while in individual stocks, the premia are not significantly positive, some-

times even negative. From Equation (4.0.6) we can see that if δxi is positive, or positive for

most stocks, the relation (4.0.6) implies a negative premium on the CIV factor f (t) that offsets

the market variance premium.

5 Factor filtration and premium estimation

We have shown that the CIV factor, if exists, should have a negative factor premium given

positive factor loadings. In this section, we propose ways to filter the CIV factor in both the

physical and the risk-neutral world, so that the difference between them can be detected to-

gether with the evidence of factor premium.

5.1 Physical world filtering

Assuming there are N risky assets in the market and the index return is denoted by rmt. To

filter the CIV factor, we model the N + 1 observed daily return series using the volatility-GAS

model of Boswijk and Liu (2014). The vector of conditional variances is denoted by ∆t, and

∆t =



σ2
1t

σ2
2t
...

σ2
Nt

σ2
mt


=



α1

α2
...

αN

αm


+



δm1 δx1

δm2 δx2
...

...

δmN δxN

δm 0



 fmtft


Both factors are assumed to have unit variance and zero mean, s.t., fmtft
 = (I −B2)1/2

 sm,t−1

st−1

+B

 fm,t−1

ft−1


This setting implies that fmt is the market variance factor and ft is the CIV factor. Note that

the market variance factor fmt originated as the market return factor, while the second factor

ft serves as the factor that cannot be detected from the return-factor structure as it is possible

to have a negative loading δxi . We would expect that fmt to be proportional to the market

variance σ2
mt while ft is somewhat different from fmt.
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When the number of asset increases, the correlation parameters increases by the rate of

(N − 1)/2. Therefore, for simplicity, we assume a single factor driving all the cross sectional

correlation, which resembles the equicorrelation model of Engle and Kelly (2009). In the factor

model, it is formulated as

vechL(Rt) = ρ̄t

where Rt is the conditional correlation matrix and ρ̄t serves as the market-wide correlation

factor. The dynamics of ρ̄t can be more flexible, for example:

ρ̄t =ωρ(1− b3) + aρsρ,t−1 + bρρ̄t−1

where sρ,t−1 is the scaled score function as introduced in Creal et al. (2013). The total number

of parameters is then 3N + 7. The parameters can be estimated by the method of maximum

likelihood assuming

rt |Ft−1 ∼N (0,Σt) and Σt =DtRtDt

whereDt = diag(∆1/2
t ). The detailed calculation about the score function and the scaling matrix

can be found in Boswijk and Liu (2014), where the volatility-factor GAS model is introduced

based on the multivariate GAS model of Creal et al. (2011).

We start the P world estimation using the 30 constituents in the Dow Jones Industrial

Average Index. As for the market return, we choose the S&P500 Index return. All observations

are collected on daily base. We first divide the 30 stocks in three groups of 10 stocks, so that

the volatility-factor GAS model is able to converge in a reasonable time. The sample window

ranges from 3rd Jan 2000 to 31st Dec 2013. We perform the estimation process under three

sorting rules. In the first rule, we divide the 30 stocks into three different groups sorted by

their market capital sizes, resulting the small, medium and large groups. The second rule sorts

the stocks by their unconditional variances estimated by univariate GJR-GARCH(1,1) model,

resulting the low, medium and high variance groups. In the third rule, we randomly divide

the 30 stocks into three groups, just for robust study. In Table 2, Table 3, and Table 4 we

present the estimation results for the three sorting methods. We can see that in all three cases,

significantly negative loadings on ft can be found for some stocks, whereas the loadings on the

market variance factor are always positive. In Figure 5, we present the estimated factors for

all three sorting rules and all three groups. We can see that in most part of the data window,

the CIV factors across different groups are very much alike and exhibit opposite and more

persistent paths compared with the market variance factors after the crisis.

[Insert Table 2 about here]

12



[Insert Table 3 about here]

[Insert Table 4 about here]

5.2 Risk-neutral world filtering

In this section, we conduct the estimation of the CIV factor ft under the risk-neutral world.

Define by equation (5.2.1) and (5.2.2) the process of the implied variance

(σQ

it )2 = αQ

i + δQmif
Q

mt + δQxif
Q

t + vQit (5.2.1)

(σQ

mt)
2 = αQ

m + δQmf
Q

mt + vQmt (5.2.2)

where vQit and vQmt capture the unexplained residuals from the two-factor structure and are

assumed to be zero-mean and have no serial dependence. Follow Christoffersen et al. (2013),

Duan and Wei (2009) and Serban et al. (2008), we assume that the factor loadings preserves

through measure change, therefore δQmi = δmi , δ
Q

xi = δxi and δQm = δm. We also restrict αQ = αP,

so that all the variance premia come from the two factors. For stock i, the unconditional

variance risk premium λi is then

λi = EQ[(σQ

it )2]−EP[(σP

it )
2] = δmiµ

Q

m + δxiµ
Q

f (5.2.3)

where µQm = EQ[f Qmt], µ
Q

f = EQ[f Qt ], µPm = EP[f Pmt] = 0, and µPf = EP[f Pt ] = 0. Conditionally, set

the variance risk premium at time t to be λit, then

λit = δmi
(
EQ

[
f Qmt |Ft−1

]
−RFm,t

)
︸                       ︷︷                       ︸

λfm,t

+δxi
(
EQ

[
f Qt |Ft−1

]
−RFf ,t

)
︸                      ︷︷                      ︸

λi,xt

(5.2.4)

where RFm,t and RFf ,t are the realized values of f Pmt and f Pt at time t. From equation (5.2.4), we

can see that the variance risk premium of stock i is consisted by first the market variance factor

premium and second the CIV factor. From the P-world estimation we know that the estimated

δmi is always positive for all stocks, which combine with the significant positive premium in

index variances and insignificant premium in individual stock variances, implies that δxiλi,xt

should be negative for most stocks. Since over 2/3 of the 30 stocks show a positive δxi , we

conjecture that λi,xt should be negative, that is, the CIV factor carries a negative premium.

To test this premium, we use the implied volatility data from OptionMetrics. The daily

time series of the implied volatilities for each standardized individual stocks with 30 days

maturity are collected together with the implied volatility of the S&P500 Index. Therefore, we

have 31 daily time series of implied volatilities, each of which measures the expected volatility

for the next 30 days (21 trading days on average). We take the P-world filtered factor values
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as the realized values, namely, the realized value for f Qt is then
∑20
s=0 f̂

P

t+s. Since we are taking

the 1-month added value, the lagged effect in filtering f̂ Pt can be ignored. One way to model

the dynamics of f Qt and f Qmt is to model them separately using the sum of their corresponding

realized values and a dynamic risk premium process. Define θf t and θmt as the two premium

process for ft and fmt, then our conjecture suggests a positive unconditional mean for θmt and a

negative one for θf t. Note that from equation (5.2.3) and (5.2.1), the two unconditional means

should be equal to µQm and µQf , respectively. Combined with equation (5.2.1) and (5.2.2), we

construct a state-space model:

(σQ

it )2 = αP

i + δmif
Q

mt + δxif
Q

t + vQit v
Q

i,t ∼N (0,hi) (5.2.5)

(σQ

mt)
2 = αP

m + δmf
Q

mt + vQmt v
Q

m,t ∼N (0,hm) (5.2.6)

f Qt+1 =
21∑
s=1

f̂ Pt+s +θf ,t+1 (5.2.7)

f Qm,t+1 =
21∑
s=1

f̂ Pm,t+s +θm,t+1 (5.2.8)

θf ,t+1 = µQf (1−ψf ) +ψf θf ,t + vQf ,t+1, v
Q

f ,t+1 ∼N (0,hf ) (5.2.9)

θm,t+1 = µQm(1−ψm) +ψmθm,t + vQm,t+1, v
Q

m,t+1 ∼N (0,hf m) (5.2.10)

The model can be easily estimated by the Kalman Filter. One would argue that the normality

assumption for vQi,t is unrealistic and can lead to biased estimations of µm and µf . We would

investigate this feature in a later study where the importance sampling method is applied to

see the difference.

The parameters to be estimated are ({hi}Ni=1 , hm, µ
Q

f , µ
Q

m, ψf , ψm, hf , hf m), a total of (N +7)

parameters. We follow the previous section and perform the estimation for each group of

stocks. This is reasonable given that the market loading δm’s are different across groups. Table

5 shows the estimation results from the nine groups of stocks. One can see that the estimated

unconditional premia for the market variance factor are always positive for the nine groups

of stocks, with the highest premium found in the group of stocks with large market capital.

The factor premia for the CIV factor are negative for all the three groups sorted by market

capital size, and negative in 7 out of 9 groups, which corresponds to our conjecture that the

CIV factor embeds a negative premium to offset the market variance factor premium. The

persistent parameters of the market factor are smaller than the ones of the CIV factor, which

is the same in the P-world estimation. In Figure 6, we show the filtered time-varying premia

θ̂mt and θ̂f t.
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[Insert Table 5 about here]

[Insert Figure 6 about here]

5.3 The variance beta from factor loadings

In section 2, we show that one of the reasons that the variance residuals have comovement is

that the squared return beta is smaller than the variance beta. In the two-factor volatility GAS

model, the variance beta can be implied by the ratio δmi/δm. Table 6 shows the squared static

return beta estimated using all the samples and the variance beta of each stock from all three

sorting schemes. One can see that the estimated variance betas in the three schemes are very

close to each other, and are consistently larger than the squared return betas. The differences

between the variance betas and the squared return betas increase with the unconditional vari-

ances, i.e., the higher the unconditional variance, the more dependence on the market factor

is omitted by the squared return beta.

[Insert Table 6 about here]

6 Trading strategy

In this section, we design the trading strategy that has only exposures to the CIV factor ft.

This strategy follows closely to the correlation trading strategy of Driessen et al. (2009) and

involves positions on individual straddles, index straddles, individual stocks and the S&P500

Index.

To begin with, we assume that the unexpected shock on the individual stock price Si fol-

lows
dSi
Si
−E

[
dSi
Si

]
= φidBi (6.0.1)

and the index level follows
dSI
SI
−E

[
dSI
SI

]
= φIdBI (6.0.2)

where we assume Bi and BI to be the standard Weiner processes. The symbol φi and φI are the

same as in Section 4. Following the factor structure on the variances in the previous section,

we can write

φ2
i (t) = αi + δmifmt + δxift

φ2
m(t) = αm + δmfmt
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Moreover, we have

dφ2
i −E

[
dφ2

i

]
= δmidfmt + δxidft

dφ2
I −E

[
dφ2

I

]
= δmdfm

Assuming Oi and OI to be the price of the at-the-money straddles for each stock i and the

index, then we have

dOi
Oi
−E

[
dOi
Oi

]
=

1
Oi

∂Oi
∂Si

φiSidBi +
1
Oi

∂Oi
∂φ2

i

δmidfm +
1
Oi

∂Oi
∂φ2

i

δxidfx (6.0.3)

dOI
OI
−E

[
dOI
OI

]
=

1
OI

∂OI
∂SI

φISIdBI +
1
OI

∂OI
∂φ2

I

δmdfm (6.0.4)

To derive the portfolio weights, we first restrict the weight on each individual straddle to be

1/N , where N is the number of stocks in one group. In our empirical analysis, there are 10

stocks in each sorted groups, therefore, 10% of the initial wealth is invested in each individual

straddle. We also apply a daily balancing strategy, so that the portfolio return is calculated

each day by assuming the initial daily wealth to be 1. Besides the 100% investment in the

individual straddles, the factor-trading strategy also contains weight zi on individual stocks,

zI on the index, and yI on the index straddle.

The delta-hedging conditions of each stock and the index require

1
N

1
Oi

∂Oi
∂Si

φiSi + ziφi = 0 (6.0.5)

1
OI

∂OI
∂SI

φISIyI + zIφI = 0 (6.0.6)

Then the hedging of the market variance factor fm provides us enough restriction to identify

all the portfolio weights:

1
N

N∑
i=1

1
Oi

∂Oi
∂φ2

i

δmi +
1
OI

∂OI
∂φ2

I

δmyI = 0 (6.0.7)

Denote the value of the portfolio as D, then

dD
D
−E

[
dD
D

]
=

 1
N

N∑
i=1

1
Oi

∂Oi
∂φ2

i

δxi

dfx (6.0.8)

This portfolio buys individual straddles and index, and shorts individual stocks and index

straddle. The portfolio only has positive exposure to the CIV factor, thus collecting all the

factor premium if the factor has a negative premium.

The trading strategy is implemented on a daily base with no transaction cost considered

and zero interest rate assumed. We choose three groups of stocks sorted by market capital size

and use the factor loadings δmi , δxi and δm in Table 2. On each day, we look for the calls and

puts for each stock i with the same maturity and same strike, pick those with the maturity that
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generates the most number of options, and choose the one with moneyness closest to 1. The

portfolio weight is calculated based on the delta and vega on the same day, and we keep the

position until the next day. On the second day, we use the price of the straddles chosen from

yesterday together with the price of stocks and index to calculate the daily portfolio return.

We collect the return, reset the wealth to 1, and start choosing a new straddle. The reason

we perform this daily balancing strategy is that the strategy is derived based on at-the-money

straddle. Therefore, we keep the straddle position as close as possible to the current price. This

strategy might cause a significant transaction cost, but we are more interested in an empirical

evidence on the existence of the factor premium of ft. We perform this strategy from January

3rd 2000 to August 31st 2013.

The results are illustrated in Table 7. One can see that the factor-trading strategy out-

performs the other strategies by achieving significantly positive returns. The advantage is

consistent throughout different groups. Note that the medium group achieves the highest re-

turn, which corresponds to the highest factor-premium µ̂Qf estimated in Table 5. Table 8 also

presents the portfolio weights, where we can see approximately -35% of wealth is invested in

the individual stocks, while around -160% is invested in the index straddle. The amount of

money invested in the index is around 120%.

7 Conclusion

Residuals from the linear factor-based asset pricing models exhibit a strong feature of co-

movement. This comovement cannot be explained by omitting factors on the return structure.

Assuming a volatility-factor based model, we conclude that the comovement in the variance

residuals is due to the missing volatility factor and the difference between the variance beta

and the squared return beta. We show that the missing volatility factor can be filtered in the

P world using the volatility-factor GAS model. The filtered CIV factor exhibits a more persis-

tent path than the market variance factor with robust results throughout different groups and

sorting schemes. Second, we investigate the factor premium of the CIV factor using Kalman

Filter using the implied volatility series. Preferable results are found where the conjecture of

a negative CIV factor premium is supported. As a further evidence, we implement a daily

trading strategy where the portfolio only has exposure to the CIV factor. The trading strategy

outperforms some existing strategies by providing averaged daily returns around 1.5% and

monthly returns higher than 20%, transaction cost unaccounted for. Some future work in-

cludes some positivity restrictions on the Kalman Filter approach and the implementation of

a trading strategy considering the transaction cost.
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Figure 1: This figure shows the idiosyncratic variances for 10 selected stocks in P and Q world. The squared

return betas are used in both cases. Data window ranges from 3rd January 2000 to 31 August 2013.
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Figure 2: This figure shows variance residuals for 10 selected stocks in P and Q world. The variance betas are

used as the factor loadings in both cases. Data window ranges from 3rd January 2000 to 31 August 2013.
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Figure 3: This figure shows the scatter plot of the variance betas versus the squared return betas in the P and the

Q world. The y = x line is drawn in the red line. In both graphs, 28 out of 30 stocks have higher variance betas

than the squared return betas.

Figure 4: This figure shows the correlation of the returns, squared returns, the residuals from PCA, and the

squared residuals. β ranges from 1 to 5; γ ranges from 0.02 to 2; Number of stocks is 30.
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Figure 5: This figure shows the estimated factors from three groups of stocks sorted by random chosen, market

capital sizes, and unconditional variances. Data window ranges from 3rd January 2000 to 31st December 2013. In

each graph, Fac1 stands for the market variance factor, and Fac2 stands for the CIV factor. Each graph presents

one sorting schemes; the numbers following the letter G in the legends denote the group numbers.
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Figure 6: This figure shows the factor premium in the three groups of stocks sorted by market capital size. The

black bar represents the factor premium of the CIV factor, the grey bar represents the factor premium of the market

variance factor. Data window ranges from 3rd January 2000 to 31 August 2013.
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Table 1: Summary of comovement results

Data Model Res. Idio.Variance Var.Res Abs.Var.Res

Static 0.0089 0.5296 0.2704 0.3552
P-world

Dynamic 0.0065 0.5208 0.1884 0.3760

Static – 0.5743 0.3515 0.4110
Q-world

Dynamic – 0.6710 0.3159 0.4304

Note: This table presents pairwise average correlation for the variance residual when the market return factor

being extracted by the return beta, and the variance residual after the market variance factor being extracted by

the variance beta. The average correlation of the raw return series is 0.3957.

Table 2: Empirical estimates with sorted market capital size

Small δmi δxi αi Medium δmi δxi αi Large δmi δxi αi

TRV 0.5032 0.1559 3.6517 UTX 0.3929 0.2210 3.1850 PFE 0.2904 0.2712 3.1297

(0.0743) (0.0678) (0.5666) (0.0512) (0.0699) (0.4650) (0.0387) (0.0768) (0.2892)

CAT 0.5877 -0.0612 4.2163 CSCO 0.8480 0.7375 7.3882 VZ 0.3984 0.4160 3.3304

(0.0691) (0.0634) (0.4125) (0.1098) (0.1058) (1.0965) (0.0585) (0.1321) (0.3608)

DD 0.4401 0.0102 2.9931 HD 0.7511 0.5477 5.0315 CVX 0.2425 0.0095 2.4704

(0.0528) (0.0243) (0.3200) (0.1051) (0.1022) (0.7781) (0.0278) (0.0212) (0.1524)

NKE 0.4257 0.1453 4.1059 DIS 0.5124 0.3180 4.0926 JPM 1.1825 0.1074 6.4865

(0.0873) (0.0715) (0.6362) (0.0707) (0.0812) (0.5404) (0.1056) (0.1318) (0.6882)

GS 0.9879 -0.1265 5.3484 C 1.6405 -0.7097 8.9055 PG 0.2426 0.2710 2.1792

(0.1162) (0.0601) (0.6502) (0.2213) (0.1807) (1.5006) (0.0387) (0.0891) (0.3225)

BA 0.5266 0.1268 4.2126 MRK 0.4501 0.2458 4.2012 WMT 0.3148 0.3284 2.7784

(0.0956) (0.0917) (0.3955) (0.0778) (0.0542) (0.5977) (0.0395) (0.0893) (0.2807)

MCD 0.2155 0.4528 3.5757 IBM 0.3552 0.2544 2.8715 GE 0.6294 0.1269 3.8500

(0.0672) (0.1193) (0.9883) (0.0468) (0.0426) (0.3540) (0.0553) (0.0855) (0.3688)

UNH 0.7693 -0.1245 4.7041 INTC 0.7870 0.8125 6.3991 JNJ 0.2286 0.2875 1.9338

(0.1554) (0.1370) (0.6036) (0.1275) (0.1210) (0.9737) (0.0281) (0.0642) (0.2538)

AXP 1.0082 -0.0966 4.7816 KO 0.2891 0.2173 2.1536 MSFT 0.5195 0.4438 4.5803

(0.1246) (0.0813) (0.5281) (0.0438) (0.0327) (0.3095) (0.0658) (0.1412) (0.4935)

MMM 0.2458 0.0554 2.2686 T 0.4821 0.4807 3.5121 XOM 0.2217 0.0613 2.3088

(0.0468) (0.0916) (0.1565) (0.0841) (0.0712) (0.5570) (0.0242) (0.0320) (0.1310)

S&P500 0.2127 1.2652 S&P500 0.1905 1.3136 S&P500 0.2179 1.3348

(0.0229) (0.1233) (0.0192) (0.1392) (0.0230) (0.1138)

Average 0.5710 0.0538 3.9858 Average 0.6508 0.3125 4.7740 Average 0.4270 0.2323 3.3047

Note: This table presents the estimated factor loadings and the unconditional variances of all 30 stocks from three

groups of 10 sorted by their market capital size. The standard errors are provided in brackets. Data window ranges

from 3rd January 2000 to 31st December 2013.
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Table 3: Empirical estimates with sorted unconditional variances

Low δmi δxi αi Medium δmi δxi αi High δmi δxi αi

JNJ 0.2023 0.1468 1.5484 IBM 0.4371 0.1811 2.7039 DIS 0.5017 0.3382 4.7673

(0.0115) (0.0192) (0.0959) (0.0216) (0.0244) (0.1170) (0.0310) (0.0404) (0.2516)

KO 0.3353 0.2091 2.1530 T 0.4172 0.2901 2.8561 CAT 0.4490 0.0216 4.8120

(0.0179) (0.0243) (0.1424) (0.0228) (0.0315) (0.1587) (0.0164) (0.0220) (0.0884)

PG 0.2407 0.2045 1.9624 MRK 0.4799 0.0908 3.8570 UNH 0.5410 -0.0366 5.3513

(0.0179) (0.0259) (0.1272) (0.0182) (0.0204) (0.1187) (0.0256) (0.0293) (0.1020)

MMM 0.3009 -0.0020 2.3534 DD 0.4790 0.0184 2.9570 HD 0.5608 0.4079 5.1839

(0.0205) (0.0182) (0.0957) (0.0212) (0.0216) (0.1018) (0.0422) (0.0473) (0.2917)

WMT 0.2902 0.2141 2.4595 UTX 0.4149 0.1207 2.7526 AXP 0.6370 -0.0172 4.8763

(0.0175) (0.0269) (0.1404) (0.0230) (0.0217) (0.1013) (0.0216) (0.0273) (0.0862)

MCD 0.2708 0.3354 2.8127 TRV 0.5725 0.1195 3.3139 GS 0.6818 -0.0267 5.6208

(0.0222) (0.0401) (0.1945) (0.0198) (0.0262) (0.1220) (0.0279) (0.0327) (0.1000)

XOM 0.3089 -0.0823 2.2911 NKE 0.4929 0.1422 3.8119 INTC 0.7275 0.6616 7.3658

(0.0205) (0.0226) (0.1049) (0.0191) (0.0249) (0.1254) (0.0493) (0.0678) (0.4480)

CVX 0.3825 -0.1683 2.5304 BA 0.5340 0.0264 3.7379 CSCO 0.6952 0.6789 8.3995

(0.0278) (0.0278) (0.1449) (0.0241) (0.0271) (0.1192) (0.0385) (0.0606) (0.4491)

VZ 0.3490 0.3311 2.9697 GE 0.6283 -0.0406 3.4095 JPM 0.9199 -0.0003 6.2365

(0.0264) (0.0410) (0.2004) (0.0274) (0.0246) (0.1378) (0.0219) (0.0333) (0.3547)

PFE 0.2904 0.1139 2.8477 MSFT 0.4509 0.2428 3.5828 C 1.1636 -0.4581 7.4529

(0.0194) (0.0251) (0.1143) (0.0201) (0.0316) (0.1486) (0.0421) (0.0554) (0.2278)

S&P500 0.3055 1.5334 S&P500 0.1964 1.2001 S&P500 0.1555 1.3094

(0.0158) (0.0876) (0.0083) (0.0424) (0.0062) (0.0250)

Average 0.2971 0.1302 2.3928 Average 0.4907 0.1191 3.2983 Average 0.6878 0.1569 6.0066

Note: This table presents the estimated factor loadings and the unconditional variances of all 30 stocks from three

groups of 10 sorted by their unconditional variances. The standard errors are provided in brackets. Data window

ranges from 3rd January 2000 to 31st December 2013.

Table 4: Empirical estimates with random group

RG1 δmi δxi αi RG2 δmi δxi αi RG3 δmi δxi αi

MSFT 0.5351 0.3916 4.3977 BA 0.4999 0.1306 3.9656 AXP 0.8900 -0.0976 5.2816

(0.0263) (0.0545) (0.3270) (0.0336) (0.0322) (0.2012) (0.0284) (0.0495) (0.1216)

KO 0.3853 0.2289 2.4244 PFE 0.2520 0.2093 2.8121 INTC 1.0996 0.8077 6.4530

(0.0166) (0.0252) (0.1834) (0.0139) (0.0269) (0.1549) (0.0470) (0.0744) (0.3844)

DD 0.5652 -0.0373 3.2104 JNJ 0.1912 0.2008 1.6307 TRV 0.6524 0.2496 3.7945

(0.0232) (0.0212) (0.1267) (0.0117) (0.0218) (0.1283) (0.0370) (0.0360) (0.1765)

XOM 0.3259 -0.0826 2.2365 MMM 0.2346 0.0613 2.1814 VZ 0.5338 0.3445 3.0010

(0.0162) (0.0190) (0.0946) (0.0124) (0.0135) (0.0957) (0.0227) (0.0328) (0.1674)

GE 0.7760 -0.0282 3.8868 MRK 0.3943 0.2247 3.8839 T 0.6096 0.4263 3.2715

(0.0318) (0.0255) (0.1678) (0.0172) (0.0236) (0.2093) (0.0135) (0.0379) (0.1443)

IBM 0.5036 0.1705 3.1279 DIS 0.5345 0.2809 4.0121 HD 0.7703 0.4266 4.5096

(0.0207) (0.0235) (0.1726) (0.0289) (0.0362) (0.2417) (0.0361) (0.0453) (0.2346)

CVX 0.3397 -0.1349 2.3966 MCD 0.2600 0.3023 2.7090 C 1.2149 -0.6748 7.9961

(0.0186) (0.0246) (0.1212) (0.0168) (0.0321) (0.1948) (0.0523) (0.0793) (0.3576)

UTX 0.5295 0.1841 3.3280 JPM 1.2439 -0.0227 6.1871 CSCO 1.0462 0.7175 7.4050

(0.0236) (0.0289) (0.1809) (0.0528) (0.0253) (0.4539) (0.0421) (0.0621) (0.3378)

PG 0.2485 0.2517 2.1945 WMT 0.2361 0.2147 2.3415 GS 0.7556 -0.0949 5.5409

(0.0141) (0.0323) (0.1959) (0.0143) (0.0245) (0.1486) (0.0367) (0.0449) (0.1600)

CAT 0.6545 -0.1896 4.4233 NKE 0.4231 0.1928 3.9287 UNH 0.7392 0.0597 5.3742

(0.0346) (0.0393) (0.1971) (0.0212) (0.0281) (0.1926) (0.0471) (0.0429) (0.1935)

S&P500 0.2714 1.3962 S&P500 0.2241 1.2773 S&P500 0.1798 1.2713

(0.0099) (0.0558) (0.0089) (0.0761) (0.0093) (0.0370)

Average 0.4863 0.0754 3.1626 Average 0.4270 0.1795 3.3652 Average 0.8312 0.2165 5.2627

Note: This table presents the estimated factor loadings and the unconditional variances of all 30 stocks from three

random groups of 10. The standard errors are provided in brackets. Data window ranges from 3rd January 2000

to 31st December 2013.
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Table 5: Kalman Filter result

µ̂Qm µ̂Qf ψ̂m ψ̂f λ̄ λ̄m

Small (MC) 15.0196 -15.8270 0.9379 0.9700 8.9078 11.6834

(6.5411) (5.2203) (0.0061) (0.0045) (6.7397) (26.8355)

Medium (MC) 12.4420 -34.3582 0.9792 0.9875 0.6052 11.8610

(13.8079) (12.6665) (0.0037) (0.0028) (8.9689) (25.2311)

Large (MC) 32.7008 -26.4527 0.9506 0.9813 2.2460 9.8806

(8.9267) (8.5516) (0.0056) (0.0035) (5.2552) (21.6564)

Low (Vol) 8.5549 -0.2276 0.9003 0.9610 3.6648 6.7002

(4.9729) (3.1485) (0.0079) (0.0053) (2.9919) (24.7251)

Medium (Vol) 11.9963 25.1850 0.9472 0.9808 6.5610 12.4500

(6.4540) (17.0126) (0.0057) (0.0039) (8.7470) (28.4389)

High (Vol) 3.7225 -31.4894 0.9563 0.9693 2.7374 10.9289

(8.3810) (10.5933) (0.0053) (0.0045) (12.2765) (26.1647)

RG1 1.6828 -12.5246 0.9471 0.9836 2.0921 8.7586

(7.1207) (11.2607) (0.0056) (0.0036) (4.6135) (26.5027)

RG2 1.9891 4.1565 0.9585 0.9795 4.3852 11.3016

(8.9683) (8.2864) (0.0054) (0.0040) (7.2325) (24.8996)

RG3 14.4611 -14.2635 0.9689 0.9828 5.0069 11.9329

(10.2031) (14.9128) (0.0044) (0.0033) (10.2227) (25.5713)

Note: This table presents the estimated factor premia for both the market variance factor and the CIV factor. The

persistent parameters are also provided together with the average premia for individual stock and index for each

group. The standard errors are provided in brackets. Data window ranges from 3rd January 2000 to 31st August

2013.
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Table 6: Beta comparison

Beta-square Var-Beta(RG) Var-Beta(MC) Var-Beta(Vol) Ave. Diff

MSFT 1.0989 1.9715 2.3846 2.2956 1.1184

KO 0.2677 1.4197 1.5178 1.0975 1.0773

DD 1.0439 2.0823 2.0697 2.4391 1.1531

XOM 0.6953 1.2007 1.0177 1.0110 0.3812

GE 1.3990 2.8594 2.8891 3.1989 1.5835

IBM 0.7537 1.8554 1.8647 2.2255 1.2282

CVX 0.7201 1.2518 1.1129 1.2520 0.4855

UTX 0.9612 1.9510 2.0626 2.1124 1.0809

PG 0.2509 0.9156 1.1135 0.7878 0.6881

CAT 1.2935 2.4115 2.7634 2.8881 1.3942

BA 0.8923 2.2308 2.4760 2.7186 1.5829

PFE 0.5367 1.1244 1.3331 0.9505 0.5993

JNJ 0.2527 0.8533 1.0490 0.6623 0.6022

MMM 0.6569 1.0470 1.1559 0.9849 0.4057

MRK 0.4993 1.7596 2.3633 2.4434 1.6894

DIS 1.1694 2.3851 2.6902 3.2274 1.5982

MCD 0.3110 1.1601 1.0134 0.8863 0.7089

JPM 2.4677 5.5505 5.4278 5.9172 3.1641

WMT 0.4283 1.0536 1.4448 0.9501 0.7212

NKE 0.6994 1.8878 2.0019 2.5097 1.4337

AXP 2.0880 4.9506 4.7408 4.0975 2.5083

INTC 1.6820 6.1166 4.1319 4.6795 3.2940

TRV 0.9976 3.6288 2.3661 2.9148 1.9723

VZ 0.5597 2.9691 1.8288 1.1424 1.4204

T 0.6325 3.3906 2.5313 2.1240 2.0494

HD 1.1076 4.2846 3.9435 3.6075 2.8376

C 3.1238 6.7575 8.6132 7.4850 4.4948

CSCO 1.8322 5.8193 4.4523 4.4721 3.0824

GS 2.0099 4.2031 4.6452 4.3855 2.4013

UNH 0.6463 4.1118 3.6176 3.4803 3.0903

Note: This table presents the sample static beta square and the variance beta estimated in each sorting schemes.

The average difference between the variance beta and the squared return beta is presented in the last column. Data

window ranges from 3rd January 2000 to 31st August 2013.
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Table 7: Portfolio performance

Strategy Average Return Std Skewness kurtosis Average Monthly Return

Fac-strategy (small) 1.40% 0.1558 0.4127 65.3627 34.04%

Fac-strategy (medium) 2.45% 0.2993 18.3570 727.6777 66.42%

Fac-strategy (large) 0.92% 0.1269 -0.9337 103.2563 21.26%

Short Index Straddle 0.93% 0.1021 0.0961 45.1407 21.46%

S&P500 Index 0.01% 0.0132 -0.0052 11.0653 0.21%

1/N on stock (small) 0.04% 0.0146 0.0700 12.0178 0.76%

1/N on stock (medium) 0.03% 0.0212 21.3339 853.1123 0.72%

1/N on stock (large) 0.01% 0.0125 0.1123 11.3577 0.26%

Note: This table presents the average daily excess returns for the factor-trading strategy in three groups sorted by

market capital size. The standard deviation, skewness, kurtosis and the average monthly returns for each of the

portfolio return time series of each strategy are also provided. Date window ranges from 3rd January 2000 to 31st

August 2013.

Table 8: Portfolio weight

Strategy Individual straddle Individual stock Index straddle S&P500 Index Risk-free

Fac-strategy (small) 100% -40.66% -160.71% 110.24% 91.13%

Fac-strategy (medium) 100% -31.30% -204.97% 161.36% 74.92%

Fac-strategy (large) 100% -37.54% -132.27% 90.99% 78.83%

Note: This table presents the average portfolio weight for the three groups of factor-trading strategies.
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